# WNE Linear Algebra 

Final Exam
Series B

6 February 2021

## Problems

Please use separate files for different problems. Please provide the following data in each pdf file

- name, surname and your student number,
- number of your group,
- number of the corresponding problem and the series.

Each problem is worth 10 marks.
Problem 1.
Let $V=\operatorname{lin}((1,3,8,7),(1,2,7,5),(-1,4,-1,7))$ be a subspace of $\mathbb{R}^{4}$.
a) find a basis $\mathcal{A}$ of the subspace $V$ and the dimension of $V$,
b) for which $t \in \mathbb{R}$ does the vector $v=(2,1,11, t) \in \mathbb{R}^{4}$ belong to $V$ ? for each such $t \in \mathbb{R}$ find coordinates of $v$ relative to the basis $\mathcal{A}$.
mat

## Problem 2.

Let $V \subset \mathbb{R}^{4}$ be a subspace given by the homogeneous system of linear equations

$$
\left\{\begin{array}{r}
x_{1}+2 x_{2}+x_{3}+11 x_{4}=0 \\
2 x_{1}-x_{2}+2 x_{3}+7 x_{4}=0
\end{array}\right.
$$

a) find a basis $\mathcal{A}$ of the subspace $V$ and the dimension of $V$,
b) complete basis $\mathcal{A}$ to a basis $\mathcal{B}$ of the subspace $W \subset \mathbb{R}^{4}$, where

$$
W=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4} \mid x_{1}+2 x_{2}+x_{3}+11 x_{4}=0\right\} .
$$

## Problem 3.

Let $\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear endomorphism given by the formula

$$
\varphi\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=\left(x_{1},-6 x_{1}+7 x_{2}-6 x_{3},-8 x_{1}+8 x_{2}-7 x_{3}\right) .
$$

a) find the eigenvalues of $\varphi$ and bases of the corresponding eigenspaces,
b) compute $A^{40}$, where $A=M(\varphi)_{s t}^{s t}$.

## Problem 4.

Let $\mathcal{A}=((1,0,3),(1,-1,2),(1,0,2))$ be an ordered basis of $\mathbb{R}^{3}$. Let $\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation given by the matrix

$$
M(\varphi)_{\mathcal{A}}^{s t}=\left[\begin{array}{rrr}
2 & 3 & 1 \\
5 & 3 & 1 \\
0 & -1 & -1
\end{array}\right]
$$

a) find the formula of $\varphi$,
b) find the matrix $M(\varphi)_{s t}^{\mathcal{A}}$.

## Problem 5.

The affine subspaces $E, H \subset \mathbb{R}^{3}$ are given by

$$
\begin{aligned}
& E=(2,1,2)+\operatorname{lin}((-1,0,1)) \\
& H=(1,2,1)+\operatorname{lin}((1,-1,0))
\end{aligned}
$$

i) describe the affine space $E$ by a system of linear equations,
ii) check if the intersection of $E$ and $H$ is non-empty.

## Problem 6.

Consider the following linear programming problem $-2 x_{3}-x_{4}-x_{5} \rightarrow$ min in the standard form with constraints
$\left\{\begin{array}{l}x_{1}+x_{2}+5 x_{3}+8 x_{4}+7 x_{5}=3 \\ x_{1}+2 x_{2}+9 x_{3}+14 x_{4}+10 x_{5}=6\end{array}\right.$ and $x_{i} \geqslant 0$ for $i=1, \ldots, 5$
a) which of the sets $\mathcal{B}_{1}=\{1,2\}, \mathcal{B}_{2}=\{1,3\}, \mathcal{B}_{3}=\{1,4\}$ are basic? Which basic set is basic feasible? Write the corresponding feasible solution.
b) solve the linear programming problem using simplex method.

