WNE Linear Algebra Final Exam Series B

6 February 2021

Problems

Please use separate files for different problems. Please provide the following data in each pdf file

- name, surname and your student number,
- number of your group,
- number of the corresponding problem and the series.

Each problem is worth 10 marks.

Problem 1.

Let V = lin((1, 3, 8, 7), (1, 2, 7, 5), (-1, 4, -1, 7)) be a subspace of \mathbb{R}^4 .

- a) find a basis \mathcal{A} of the subspace V and the dimension of V,
- b) for which $t \in \mathbb{R}$ does the vector $v = (2, 1, 11, t) \in \mathbb{R}^4$ belong to V? for each such $t \in \mathbb{R}$ find coordinates of v relative to the basis \mathcal{A} .

 mat

Problem 2.

Let $V \subset \mathbb{R}^4$ be a subspace given by the homogeneous system of linear equations

 $\begin{cases} x_1 + 2x_2 + x_3 + 11x_4 = 0\\ 2x_1 - x_2 + 2x_3 + 7x_4 = 0 \end{cases}$

- a) find a basis \mathcal{A} of the subspace V and the dimension of V,
- b) complete basis \mathcal{A} to a basis \mathcal{B} of the subspace $W \subset \mathbb{R}^4$, where

$$W = \left\{ (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_1 + 2x_2 + x_3 + 11x_4 = 0 \right\}.$$

Problem 3.

Let $\varphi \colon \mathbb{R}^3 \to \mathbb{R}^3$ be a linear endomorphism given by the formula

$$\varphi((x_1, x_2, x_3)) = (x_1, -6x_1 + 7x_2 - 6x_3, -8x_1 + 8x_2 - 7x_3).$$

- a) find the eigenvalues of φ and bases of the corresponding eigenspaces,
- b) compute A^{40} , where $A = M(\varphi)_{st}^{st}$.

Problem 4.

Let $\mathcal{A} = ((1,0,3), (1,-1,2), (1,0,2))$ be an ordered basis of \mathbb{R}^3 . Let $\varphi \colon \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation given by the matrix

$$M(\varphi)_{\mathcal{A}}^{st} = \begin{bmatrix} 2 & 3 & 1 \\ 5 & 3 & 1 \\ 0 & -1 & -1 \end{bmatrix}$$

a) find the formula of φ ,

b) find the matrix $M(\varphi)_{st}^{\mathcal{A}}$.

Problem 5.

The affine subspaces $E, H \subset \mathbb{R}^3$ are given by

$$E = (2, 1, 2) + \ln((-1, 0, 1)),$$

$$H = (1, 2, 1) + \ln((1, -1, 0))$$

$$H = (1, 2, 1) + \ln((1, -1, 0)).$$

i) describe the affine space E by a system of linear equations,

ii) check if the intersection of E and H is non–empty.

Problem 6.

Consider the following linear programming problem $-2x_3-x_4-x_5\to\min$ in the standard form with constraints

5	x_1	+	-	x_2	+	$5x_3$	+	$8x_4$	+	$7x_5$	=	3	and $x_i \ge 0$ for $i = 1, \dots, 5$
Ì	x_1	+	-	$2x_2$	+	$9x_3$	+	$14x_4$	+	$10x_{5}$	=	6	and $x_i \ge 0$ for $i = 1, \dots, 5$

a) which of the sets $\mathcal{B}_1 = \{1, 2\}$, $\mathcal{B}_2 = \{1, 3\}$, $\mathcal{B}_3 = \{1, 4\}$ are basic? Which basic set is basic feasible? Write the corresponding feasible solution.

b) solve the linear programming problem using simplex method.